

碧云天生物技术/Beyotime Biotechnology 订货热线: 400-1683301或800-8283301 订货e-mail: order@beyotime.com 技术咨询: info@beyotime.com

网址: http://www.beyotime.com

BeyoClick™ EU-647 RNA合成检测试剂盒

产品编号	产品名称	包装
R0311S	BeyoClick™ EU-647 RNA合成检测试剂盒	50-500次
R0311L	BeyoClick™ EU-647 RNA合成检测试剂盒	200-2000次

产品简介:

- ▶ 碧云天BeyoClick™ EU-647 RNA合成检测试剂盒(BeyoClick™ EU RNA Synthesis Kit with Alexa Fluor 647), 是一种基于 RNA合成过程中尿嘧啶核苷(Uridine)类似物EU (5-ethynyl-uridine)的掺入,并通过随后的点击反应(Click reaction)使EU被 Alexa Fluor 647所标记,从而实现简单、快速、高灵敏地检测新合成RNA的试剂盒。
- ▶ 本试剂盒可以检测到活细胞或组织样品中新合成的RNA,而不检测DNA[1]。检测过程中不需要放射性同位素和抗体,只需要简 单的两步反应即可完成。
- > 经本试剂盒处理后,有RNA合成的细胞在荧光显微镜下呈现较强的远红外荧光,通常该荧光探针被激发后,肉眼不能观察到激发 出来的长波长荧光,但可以被具有相应激发和发射检测模块的荧光显微镜、激光共聚焦显微镜、流式细胞仪或荧光酶标仪等所检 测到,也可以用于高内涵筛选(High-content screening, HCS)。流式细胞仪或荧光酶标仪检测仅适用于细胞样品,不适用于组
- ➤ EU (5-ethynyl-uridine),中文名为5-炔基尿苷,是一种新型尿嘧啶核苷(Uridine)类似物,EU可以在RNA合成过程中替代尿苷 掺入到新合成的RNA中。另一方面,EU上的乙炔基能与荧光标记的小分子叠氮化物探针(如Azide Alexa Fluor 488、Azide Alexa Fluor 555、Azide Alexa Fluor 594、Azide Alexa Fluor 647等)通过一价铜离子的催化发生共价反应,形成稳定的三唑 环,该反应非常迅速高效,被称作点击反应(Click reaction),其反应原理参见图1。通过点击反应,新合成的RNA会被相应的荧 光探针所标记,从而可以使用适当的荧光检测设备检测到新合成RNA。

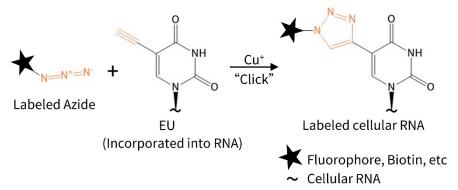
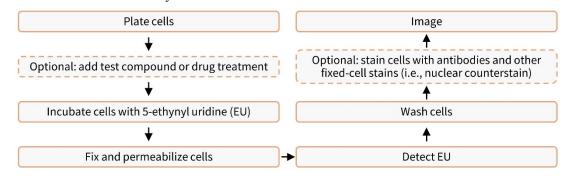



图1. 碧云天BeyoClick™系列RNA合成检测试剂盒中的点击反应(Click reaction)原理图。荧光探针等标记的叠氮化物(Labeled Azide)与掺入到细胞RNA中的EU,在铜离子的催化发生共价反应,形成稳定的三唑环,最终使细胞RNA标记上荧光探针或其它 探针。

- ➤ 本试剂盒反应简单、检测灵敏度高。本试剂盒基于简单高效的点击反应,无需特殊温度,只需少量的小分子叠氮化物探针即可非 常有效地标记掺入的EU,并且可以检测到单个细胞的RNA合成情况。
- > 本试剂盒使用便捷、兼容性好。本试剂盒只需常用的多聚甲醛固定和Triton X-100穿透,就可以使叠氮化物探针有效进入细胞并 发生点击反应,不会影响细胞形态,不会产生多余的附加产物,不会影响基于抗体的免疫荧光和免疫组化检测,也不会影响DNA 的荧光染色(如PI染色检测细胞周期、DAPI或Hoechst染料检测细胞核等)。
- > 本试剂盒检测快速。本试剂盒采用的BeyoClick™ EU法检测新合成的RNA仅需1.5-2小时。本试剂盒操作流程请参考图2。

▶ 本试剂盒同时提供了染色细胞核的Hoechst 33342, 以方便染色观察所有的细胞核。HeLa细胞用本试剂盒检测新合成RNA的效果参见图3。

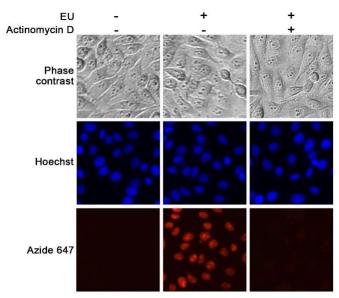


图3. 碧云天BeyoClick™ EU-647 RNA合成检测试剂盒(R0311)检测HeLa细胞新合成RNA的效果图。EU孵育2小时后检测,无EU组观察不到荧光(最左侧一列); EU (1mM)组有较强的伪彩红色荧光(中间一列); 而用RNA合成抑制剂Actinomycin D (1μM)提前预处理0.5小时后,荧光显著减弱,说明RNA合成抑制后,EU的掺入被显著抑制(最右侧一列)。实际检测效果会因实验条件、检测仪器等的不同而存在差异,图中效果仅供参考。

➤ 本试剂盒小包装R0311S如果用于培养的细胞(6孔板)的检测,可以检测50个样品,每个样品的反应体系为500μl的Click反应液;如果用于96孔板检测,可以检测500个样品,每个样品的检测体系为50μl的Click反应液;如果用于12孔、24孔、48孔或384孔板样品的检测,分别可以检测125、250、350和1250个样品,每个样品推荐的Click反应液用量为200μl、100μl、70μl和20μl;如果用于流式细胞仪检测,可以检测50个样品,每个细胞样品的细胞数量宜为10-100万,每个样品的反应体系为500μl的Click反应液;如果用于冰冻或石蜡切片的检测,可以检测125-250个样品,每个样品的反应体系为100-200μl的Click反应液。大包装R0311L可检测样品的数量为小包装R0311S的4倍。

包装清单:

产品编号	产品名称	包装	
R0311S-1	EU (100mM)	1.1ml	
R0311S-2	Azide 647	55µl	
R0311S-3	Click Reaction Buffer	30ml	
R0311S-4	CuSO ₄	1.1ml	
R0311S-5	Click Additive	2管	
R0311S-6	Hoechst 33342 (1000X)	50µl	
	说明书	1份	

产品编号	产品名称	包装
R0311L-1	EU (100mM)	4.4ml
R0311L-2	Azide 647	220µl
R0311L-3	Click Reaction Buffer	120ml
R0311L-4	CuSO ₄	4.4ml
R0311L-5	Click Additive	1瓶
R0311L-6	Hoechst 33342 (1000X)	200µl
	说明书	1份

保存条件:

-20°C保存,一年有效。Azide 647和Hoechst 33342须避光保存。

注意事项:

▶ Click Additive配制成溶液后请注意适当分装冻存。如果溶解后有白色物质析出,请上下颠倒多次,待全部溶解后使用。如果该

溶液颜色变成棕色,说明该组分的有效成分已失效,请弃用。

- > 如果用于动物实验需要更多EU,可以从碧云天订购5-Ethynyl Uridine (EU) (≥98%, BioReagent) (ST2055)。
- ▶ 由于本产品需要铜离子催化进行点击反应,请注意如下的兼容性问题及解决方案。本产品完全兼容有机类染料如Alexa Fluor®系 列普通染料及Fluorescein (FITC)、Allophycocyanin (APC)及APCE-tandems染料;对于Qdot®纳米晶体探针、Horseradish peroxidase (HRP)、R-phycoerythrin (R-PE)和R-PE-tandems染料如Alexa Fluor® 680-R-PE等,需要在点击反应完成后进 行反应和检测;本产品会影响GFP、RFP、mCherry等荧光蛋白的荧光,对于荧光类蛋白如Green Fluorescent Protein (GFP)、TC-FlAsH™和TC-ReAsH™类试剂,需要在点击反应前进行反应和检测。由于Phalloidin (鬼笔环肽)不兼容点击反应, 推荐使用Tubulin-Tracker Red (C1050)进行细胞微管的检测。
- ➤ 本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。
- ▶ 为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:

1. 需要用户自己准备的耗材和试剂

- a. PBS (pH7.2-7.6) (C0221A)_o
- b. 固定液(推荐使用免疫染色固定液(P0098)或4%多聚甲醛固定液(P0099))。
- c. 洗涤液(推荐使用免疫染色封闭液(P0102), QuickBlock™免疫染色封闭液(P0260), 或含3% BSA的PBS)。
- d. 通透液(推荐使用免疫染色强力通透液(P0097), 免疫染色洗涤液(P0106), 或含0.3% Triton X-100的PBS)。
- e. 去离子水或超纯水。
- f. 根据实验要求: 18×18mm盖玻片(FCGF18), 6孔板或其它多孔板, 或流式细胞分析仪用管子(如12×75mm)。

2. 检测体系的准备

- a. 如下以6孔板或常规切片检测体系为例,如果使用12孔板、96孔板或384孔板等孔板、检测体系可以相应按比例缩小。
- b. 如果检测的是悬浮细胞, 请按常规的悬浮细胞的操作方式进行。例如和贴壁细胞相比, 相关步骤需要增加离心步骤等, 如 1000×g室温离心5分钟。

3. 培养细胞的EU标记及固定、洗涤和通透

- a. 在6孔板中(如有必要可以加入盖玻片)培养适当数量的细胞。细胞培养过夜并且恢复到正常状态后,进行所需的药物处理或者 其它刺激处理等。
- b. 配制2X的EU工作液:由于EU工作液是与培养液等体积加入到孔板中,所以需要配制成2X的工作液。推荐的EU终浓度为 1mM (1X), 用细胞培养液50:1稀释EU (100mM)即可得到2X的EU工作液(2mM), 例如取100μl EU (100mM)加入4.9ml 中,即得5ml 2X的EU工作液(2mM)。
 - 注:对于A549、HeLa和NIH/3T3等贴壁细胞、推荐EU的使用终浓度为1mM。但细胞类型、培养液种类、细胞密度、细胞 增殖速度等多方面的因素会影响EU掺入到细胞中的量,因此初次使用时建议对EU的使用浓度进行一定的摸索。如果之前使 用过BrU进行实验,则可以参考BrU的终浓度作为EU的终浓度。
- c. 将37°C预热的2X的EU工作液(2mM),等体积加入6孔板中,使6孔板中的EU终浓度变为1X。例如设计终浓度为1mM,原先 6孔板中的培养液为1ml,则将1ml 2X的EU工作液(2mM)加入到孔板中。如果培养液体积过大,可以先吸除适量的培养液, 再加入等体积的2X的EU工作液;或者可以减少EU工作液的体积并增加EU的浓度,使最终培养液中的EU浓度为1mM,例如 2ml培养液中加入220μl 10mM EU。如果加药处理的,建议保持原来的药物浓度,直接添加适量EU在原培养孔中。
- d. 继续孵育细胞2小时。该孵育时间的长短取决于细胞生长速率,通常宜继续孵育细胞周期10%左右的时间。对于常见的哺乳动 物细胞如HeLa、3T3、HEK293等,细胞周期大约在18-25小时,孵育时间宜在2小时左右。人胚胎细胞的细胞周期约30分 钟,推荐的孵育时间为5分钟;酵母细胞的细胞周期约3小时,推荐的孵育时间为20分钟,增殖的神经细胞其细胞周期约5天, 推荐的孵育时间为1天。孵育时间小于45分钟时,建议提高EU的浓度;孵育时间大于20小时时,建议适当降低EU的浓度。
- e. EU标记细胞完成后,去除培养液,并加入1ml固定液,室温固定15分钟。注:对于流式细胞仪检测,贴壁细胞胰酶消化后用 培养液重悬后再固定。
- f. 去除固定液,每孔用1ml洗涤液洗涤细胞3次,每次3-5分钟。
- g. 去除洗涤液,每孔用1ml通透液,室温孵育10-15分钟。
- h. 去除通透液,每孔用1ml洗涤液洗涤细胞1-2次,每次3-5分钟。
- i. 转步骤5。

4. 动物体内EU的标记及切片样品的处理

EU可以通过注射或进食等适当方式进行动物的体内标记。如下以小鼠为例,其它动物体内EU的标记请参考相关文献。

- a. 对于小鼠,可以按照100-400mg/kg的用量,把EU用PBS配制成一定浓度,腹腔注射、特定组织或器官局部注射或者加入饮 用水中。具体用量与所用动物的种类、体重以及使用方式有关,可以参考相关文献,因此初次使用时建议对EU的使用浓度进 行一定的摸索,或者直接使用200mg/kg的浓度进行测试。如果之前使用过BrU进行实验,则可以参考BrU的终浓度作为EU 的终浓度。EU可以单独购买碧云天的ST2055。
- b. 4小时后或根据特定实验确定的适当时间后,快速处死小鼠,取出所需的组织,按照常规步骤制作冰冻切片或石蜡切片。EU 标记的时间也可以参考相关文献自行调整。
- c. 对于冰冻切片:
 - (a) 加入适量固定液, 室温固定15分钟。
 - (b) 去除固定液,用适量洗涤液洗涤3次,每次3-5分钟。

- (c) 去除洗涤液, 用适量通透液, 室温孵育10-15分钟。
- (d) 去除通透液,用适量洗涤液洗涤1-2次,每次3-5分钟。
- (e) 抗原修复(选做): 如果同时需要进行目的蛋白的免疫荧光染色,并有必要进行抗原修复,可以使用适当的抗原修复液,例如P0090 冰冻切片快速抗原修复液(5X),或者自行配制的适当的抗原修复液进行抗原修复处理。
- (f) 转步骤5。

d. 对于石蜡切片:

- (a) 脱蜡:二甲苯中脱蜡5-10分钟。换用新鲜的二甲苯,再脱蜡5-10分钟。无水乙醇5分钟,换新的无水乙醇3分钟。95%乙醇3分钟。85%乙醇3分钟。75%乙醇3分钟。50%乙醇3分钟。PBS 5分钟。
- (b) 抗原修复(选做): 如果同时需要进行目的蛋白的免疫组化染色,可以使用适当的抗原修复液,例如P0081 柠檬酸钠抗原修复液(50X)、P0083 改进型柠檬酸钠抗原修复液(50X)、P0085 EDTA抗原修复液(50X)、P0086 柠檬酸钠-EDTA抗原修复液(40X)、P0088 通用型强力抗原修复液(10X)、P0092 漂片抗原修复液(10X),或者自行配制适当的抗原修复液进行抗原修复外理。

特别注意:如果使用蛋白酶K或胰酶进行抗原修复,必须反复洗涤干净,否则残留的酶会严重干扰后续标记反应。

(c) 转步骤5。

5. EU检测

注:本步骤6孔板中每孔的反应体系为500⊠l的反应混合物。对于12、24、48、96和384孔板,每孔的反应的体系分别为200μl、100μl、70μl、50μl和20μl的反应混合物。对于较小的孔,单位培养面积的液体用量已经适当增加,以有效避免液体蒸发可能带来的负面影响。对于切片,可以根据切片大小,每个切片使用100-200μl的反应混合物。如下以6孔板中的细胞样品为例说明具体的操作方法,对于其它孔板或切片,仅每步溶液的用量按比例调整即可,其余方法相同。

- a. 配制Click Additive Solution:对于R0311S,用1.3ml去离子水溶解试剂盒中提供的一管Click Additive,混匀至全部溶解,即为Click Additive Solution;对于R0311L,加入10.4ml去离子水溶解试剂盒中提供的一瓶Click Additive,混匀至全部溶解,即为Click Additive Solution。配制后可以适当分装,并-20°C保存。
- b. 参考下表配制Click反应液。注:请严格按照下表中组分顺序和体积配制Click反应液,否则点击反应可能无法有效进行; Click反应液须在配制后15分钟内使用。

Componento	Wells of 6 well plates						
Components	1	2	4	5	10	25	50
Click Reaction Buffer	430µl	860µl	1.72ml	2.15ml	4.3ml	10.75ml	21.5ml
CuSO ₄	20µl	40µl	80µl	100µl	200µl	500µl	1ml
Azide 647	1µl	2µl	4µl	5µl	10µl	25µl	50µl
Click Additive	50µl	100µl	200µl	250µl	500µl	1.25ml	2.5ml
Total volume	500µl	1ml	2ml	2.5ml	5ml	12.5ml	25ml

- c. 去除上一步骤中的洗涤液。
- d. 每孔加入0.5ml Click反应液,轻轻摇晃培养板以确保反应混合物可以均匀覆盖样品。
- e. 室温避光孵育30分钟。
- f. 吸除Click反应液,用洗涤液洗涤3次,每次3-5分钟。
- g. 如果需要对细胞核进行染色,可以参照步骤6进行。如无其它的特殊需要,即可在荧光显微镜下观察,或者使用流式细胞仪、 多功能酶标仪进行荧光检测,或者用高内涵筛选仪器(一般高内涵筛选需要使用染料对细胞核进行染色)进行检测。Azide 647 的最大激发波长是650nm,最大发射波长是670nm。

6. 细胞核染色

为了检测细胞增殖的比例,可以考虑使用Hoechst 33342进行细胞核染色。一般高内涵筛选仪器也需要对细胞核进行染色。

- a. 1X Hoechst 33342溶液的配制: 按1:1000比例用PBS稀释Hoechst 33342 (1000X),例如取1μl Hoechst 33342 (1000X)加入 1ml PBS中,混匀,即得1ml 1X Hoechst 33342溶液。
- b. 接步骤5g, 吸除洗涤液后, 每孔加1X Hoechst 33342溶液1ml, 室温避光孵育10分钟。
- c. 吸除1X Hoechst 33342溶液。
- d. 用洗涤液洗涤3次, 每次3-5分钟。
- e. 随后即可进行荧光检测。Hoechst 33342为蓝色荧光,最大激发波长为346nm,最大发射波长为460nm。

7. 流式细胞仪检测

对于经步骤5或6获得的细胞悬液样品进行流式检测。如果使用传统的流体动力学聚焦的流式细胞仪来测量总RNA含量,请在检测过程中使用低流速,实验中的每个样品应使用相同的收集速率和细胞浓度。EU标记产生的荧光信号一般使用对数刻度的横坐标。Azide 647的最大激发波长是650nm,最大发射波长是670nm。

注1: 建议使用未经EU标记的细胞样品作为流式细胞仪检测的阴性对照,并选择合适的电压。

注2: 由于流式细胞仪检测比较灵敏,可根据细胞类型和实际染色情况对Azide 647的使用量进行适当调整。

参考文献:

1. Jao CY, Salic A. Proc Natl Acad Sci U S A. 2008. 105(41):15779-84.

相关产品:

产品编号	产品名称	包装
C0071S/L	BeyoClick™ EdU-488细胞增殖检测试剂盒	50-500/200-2000次
C0075S/L	BeyoClick™ EdU-555细胞增殖检测试剂盒	50-500/200-2000次
C0078S/L	BeyoClick™ EdU-594细胞增殖检测试剂盒	50-500/200-2000次
C0081S/L	BeyoClick™ EdU-647细胞增殖检测试剂盒	50-500/200-2000次
C0085S/L	BeyoClick™ EdU细胞增殖检测试剂盒(DAB法)	50-500/200-2000次
C0088S/L	BeyoClick™ EdU细胞增殖检测试剂盒(TMB法)	50-500/200-2000次
R0301S/L	BeyoClick™ EU-488 RNA合成检测试剂盒	50-500/200-2000次
R0305S/L	BeyoClick™ EU-555 RNA合成检测试剂盒	50-500/200-2000次
R0309S/L	BeyoClick™ EU-594 RNA合成检测试剂盒	50-500/200-2000次
R0311S/L	BeyoClick™ EU-647 RNA合成检测试剂盒	50-500/200-2000次
P1202S/L	BeyoClick™ HPG-488蛋白合成检测试剂盒	50-500/200-2000次
P1206S/L	BeyoClick™ HPG-555蛋白合成检测试剂盒	50-500/200-2000次
P1209S/L	BeyoClick™ HPG-594蛋白合成检测试剂盒	50-500/200-2000次
P1213S/L	BeyoClick™ HPG-647蛋白合成检测试剂盒	50-500/200-2000 次
P1217S/L	BeyoClick™ HPG蛋白合成检测试剂盒(DAB法)	50-500/200-2000次
P1221S/L	BeyoClick™ HPG蛋白合成检测试剂盒(TMB法)	50-500/200-2000次
P1215S/L	BeyoClick™ HPG蛋白合成检测试剂盒(WB法)	50/200次
ST067-50mg/250mg/1g	EdU	50mg/250mg/1g
ST2055-50mg/250mg/1g	5-Ethynyl Uridine (EU) (≥98%, BioReagent)	50mg/250mg/1g
ST2057-5mg/25mg/100mg	L-Homopropargylglycine (HPG) (≥98%, BioReagent)	5mg/25mg/100mg

Version. 2023.06.07